Free Araki-woods Factors and Connes’ Bicentralizer Problem

نویسنده

  • CYRIL HOUDAYER
چکیده

We show that for any free Araki-Woods factor M = Γ(HR, Ut) ′′ of type III1, the bicentralizer of the free quasi-free state φU is trivial. Using Haagerup’s Theorem, it follows that there always exists a faithful normal state ψ on M such that (M) ∩M = C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Classification of Full Factors of Type Iii

We introduce a new invariant S (M) for type III factors M with no almost-periodic weights. We compute this invariant for certain free Araki-Woods factors. We show that Connes’ invariant τ cannot distinguish all isomorphism classes of free Araki-Woods factors. We show that there exists a continuum of mutually non-isomorphic free Araki-Woods factors, each without almostperiodic weights.

متن کامل

On Some Free Products of Von Neumann Algebras Which Are Free Araki-woods Factors

We prove that certain free products of factors of type I and other von Neumann algebras with respect to nontracial, almost periodic states are almost periodic free Araki-Woods factors. In particular, they have the free absorption property and Connes’ Sd invariant completely classifies these free products. For example, for λ, μ ∈]0, 1[, we show that (M2(C), ωλ) ∗ (M2(C), ωμ) is isomorphic to the...

متن کامل

Free Quasi-free States

To a real Hilbert space and a one-parameter group of orthogonal transformations we associate a C∗-algebra which admits a free quasi-free state. This construction is a freeprobability analog of the construction of quasi-free states on the CAR and CCR algebras. We show that under certain conditions, our C∗-algebras are simple, and the free quasi-free states are unique. The corresponding von Neuma...

متن کامل

Structural Results for Free Araki-woods Factors and Their Continuous Cores

We show that for any type III1 free Araki-Woods factor M = Γ(HR, Ut) ′′ associated with an orthogonal representation (Ut) of R on a separable real Hilbert space HR, the continuous core M = M⋊σ R is a semisolid II∞ factor, i.e. for any non-zero finite projection q ∈ M , the II1 factor qMq is semisolid. If the representation (Ut) is moreover assumed to be mixing, then we prove that the core M is ...

متن کامل

Thermal Quantum Fields with Spatially Cut-off Interactions in 1+1 Space-time Dimensions

We construct interacting quantum fields in 1+1 space-time dimensions, representing charged or neutral scalar bosons at positive temperature and zero chemical potential. Our work is based on prior work by Klein and Landau and Høegh-Krohn. Generalized path space methods are used to add a spatially cut-off interaction to the free system, which is described in the Araki-Woods representation. It is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009